What are unconcious biases and why do they matter for sustainability?

A bias is something, that we believe to be true, but in reality it might not be. These biases can relate to our own perception – how we see ourselves and how we think to see ourselves. They can also relate to how we see the world around us in relation to ourselves and how we think to see it relation to ourselves.

Does our own reflection hold true to what we believe is true? Who we think we are , whether what we enjoy, follow or do holds as good or bad? And if not, would rather believe so?

Biases can be harmful, if they lead us to making false ideas or assumptions about ourselves and others, but also if they support prejudices or stereotypes. Think about not “looking young enough” to be a reporter, or too old to try out something that could bring joy to oneself. – You are likely not too old and your qualities as reporter shouldn’t be determined by your age.

Now, we could think about getting rid of biases, but that is more difficult to do, because many of them are hiding in our unconciousness. This means that we are not aware of them, until we are made aware. Freud, the psychoanalyst, believes that most of our unconciousness is repressed and only through disinhibation, one finds what holds most true to themselves or can live a life most concious.

Because most biases are manifested deep within ourselves and thus, our environment, we are more likely to accept our biases, or even support as oppose to change them. – Change and awarness can be scary!

Making us aware of biases is difficult, because it changes the way we view ourselves and others. It can also make life or actions difficult, if awarness in unconcious biases lead to an understanding, that a situation needs to change, while there may be limited resources to do so. Resources can relate to emotional capacity, a support network , but also financial, technical or knwoledge capacity on a firm level. On the other hand, being aware of biases can support better decision making and because of that can help in creating valid opportunities for ourselves, businesses or societies.

What are some example for unconcious biases?

One of the most known biases is the “confirmation-bias“. It relates to a belief that you hold close i.e. believing that the product you bought or produced is sustainable. To confirm that, you are looking for a support network that verifies that. You’d less likely look for critiques, because you want your product to enter the market and stay there. For sustainability innovations, this can be a challange, because the system, in which the innovation is embedded has huge influences on its success or failure. While shoes made from recycled ocean plastic sounds great, plastic continuesly needs to be produced. On another note, an entrepreneur may think that technology only, will save the climate, when literacy in terms of language and technical vocabulary are just as important to run such innovation. Think about how many people in this world still don’t have access to education.

Another bias could be a belief or practice that has been followed for centuries, but does not hold true anymore. An example is the idea of it being normal to work 8-10 hours a day and that part-time work is only for parents or people in need. In reality, part time work can be for everyone. It gives more energy, time to be human and research from Denmark shows that people working 6 hour shifts are just as efficient; They are more happy , more productive and possibly more innovative.

Another bias might be cultural. An example is the perception that one can only find fullfillment in life, if one has a family, including a child and a house. In reality, this does hold not true, families can be diverse and different people can seek different types of fullfillment that holds true to their own beliefs and values. Even single parents can be great foster parents, but the perception still persist that a child needs ” two parents”. A consequence is that many children , who could have a loving “one parent” remain in the foster system.

One may also support a knowledge- bias; believing to know everything or believing that knowledge is fixed and not able to change. Most likely it is because science advances and different people have different forms of knowledge based on experiences, education and other valid factors. While in fact, carbon-neutrality is essential for this the human race to sustain, resolving war and other social conflicts, might as well be just as important.

Why do unconcious biases matter for sustainability?

Sustainability is more then CO2. It’s about a society that thrives, a society that promotes well-being and social justice, a society that can make concious choices and thus, lives to its fullest potential. This is only possible if biases are being made aware of. These biases can relate to businesses that aim at doing good, but may unconciously engage in social or greenwashing. They may also relate to consumers who cannot make accurate choices, because they believe in certain biases. Besides consumer and producer choices, biases can also support discrimination and other mental health discrepancies that can negatively effect the individual and society on short as well as long term.

Why should we be learning more about it?

With more attention and P&R being done around “Sustainability”, other just as important issues such as social injustice, prejudices or discrepancies between the rich and poor are regarded less. Removing more biases, or learning to explore them for ourselves and others, can help to create a society more critical, more prone to change, more likely to work together and more ready to thrive. [Of course it can also help to save governmental and business cost] 😉


Learnings and inspiration from my own psychoanalysis that follows Freuds method of exploring the unconciousness (and biases).

Biobased materials are the solution for mitigating Scope 3 emissions

One of the many reasons that make me support bio-based materials, is their untapped potential as circular material. There is no sand or mineral that can transform itself as a result of anerobic digestion processes as ecological and energy efficient then bio-based materials.

Transforming bio-based resources has multiple benefits. One of them is the fact that we use re-growing organic matter that (quickly) captures carbon, we then move it or simply transform it and at the end of the materials’ life-cycle it can become [ideally] one with nature again- dead organic matter.

In addition, using, re-using, up-cycling and recycling bio-based materials will be one of the key components in tackling the climate crisis and accounting for environmental responsibilty as well. The reason is that bio-based materials can be transformed into other by-products along the value chain and therefore aid in reducing scope 3 emissions (nex tto scope 1 and 2 emissions).

Scope 3 emissions are those emissions that occcur outside of control of the company such as transport and waste disposal. They constitute up to seventy-five percent of a company’s emission footprint and therefore inhibits a firm’s ability to pursue the most cost-effective carbon mitigation strategies (Downie and Stubbs, 2013). Another disadvantage is that scope 3 emissions are not accounted for in the National Determined Contributions (NDCs) under the Paris Agreement. Our current GHG inventories are therefore incomplete, or misleading.

Yesterday, I watched an excellent Webinar by UNDP on the Circular Economy and a New Generation of NDCs. It was highlighted that a country could be well on track to achieve its NDCs as most of the production, where emissions are occuring, have been outsourced. But if we would look at emissions from a “consumption” perspective”, countries would be much less likely to meet their NDCs. This particular relates to the fact that only scope 1 and 2 emissions are accounted but not scope 3 emissions.

Type 3 emissions can be largely reduced if we look at bio-based materials

When we look at the bio-based model of the circular economy, lets say for housing, it is relatively easy to point out that organic waste can be used for multiple purposes. On the image below, waste water is used and transformed into energy, which is again used to supply energy for the household and other applications.

This model can also be applied to entire cities such as on the image below. This model also runs on the integration of renewable energy and bio-based waste to generate energy and add value to the urban setting as well. The model would not function, if it would not incorporate organic waste.

The bio-based economy is more efficient then the non-bio based economy

Of course, circularity also works with other non-biobased materials, but there are limits to their re-utilization and their potential in mitigating scope 3 emissions. In the webinar an excellent example of a “smartcrusher”, which breaks concrete back into its homogenous ingredients was pointed out. I like that it is possible to reutilize these ingriedients, but there are emission limits towards their reutilization and value additon.

Bio-based materials are the answer to carbon neutrality

On the opposite, if we were to adapt more bio-based materials, we could use less finite materials, create value from organic waste products and meanwhile, add value throughout the production. An excellent example for me is bamboo, because of its versatile industrial applications and alternative to steel.

If we look at the production of bamboo boards, each waste component can be used and transformed again either in the form of energy [i.e. gas, electricity] or products [i.e. pellets, charcoal, bio-char]. I like the image of a wood production process below, because it illustrates the versatility of timber waste products. This also applies to bamboo, besides that bamboo grows much quicker and drives well in degraded soils.

Bio-based materials help our planet thrive

A few months ago my former thesis -supervisor introduced me to the concept “ThriveAbility”. ThriveAbility reframes sustainability by focusing on the positive benefits of collectively living within our means ( operating within the carrying capacities of capitals). ThriveAbility does this by weaving two additional dimensions into the sustainability equation that remedy the Social and Governance weak spots, while catalysing context-based environmental performance. It basically looks at adding value to our environment instead of exploiting it (Baue, 2016).

With bio-based products we can do so. An example is bio-char that can be produced as waste product and be fet back into farms. Biochar can be used as soil enhancer as it holds carbon, boosts food security, and increases soil biodiversity, and discourage deforestation. The process creates a fine-grained, highly porous charcoal that helps soils retain nutrients and water. Biochar is found in soils around the world as a result of vegetation fires and historic soil management practices. Intensive study of biochar-rich dark earths in the Amazon (terra preta), has led to a wider appreciation of biochar’s unique properties as a soil enhancer (InternationalBiocharInitative, 2019)

Mitigating scope 3 emissions works well on the local level

Since our supply chains are connected across the globe, it is more difficult to achieve carbon neutrality during transportation. But if we would overall , in each region and city of the supply chain focus more on bio-based materials [and renewables], we could feed more energy into our transportation system and therefore ensure that we are meeting our global target under Paris.

My ideal supply-chain would be an integrated bio-based supply chain, which integrates circularity on each stage of it. Since there are growth-limits for bio-based materials, I would emphasize circular business models for end consumers and producers; 1. To capture product value and 2. To have sufficient time for circular systems to regenerate within out planetary boundaries.

My ideal and over simplified global circular supply-chain . On factory level, we can drive on bio-waste products and feed some components back into the farm level, such as bio-char as soil amendment

On a global level, there are of course more barriers and I recommend reading the article on “Bio-based Materials Within the Circular Economy: Opportunities and Challenges” by Brundklaus and Riise (2018) to receive a greater insight into that topic.

Have you become intersted to calculate your Scope3 emissions? I found an excellent technical guideline by the Greenhouse Gas Protocol, which provides standards, guidance, tools and training for business and government to measure and manage climate-warming emissions. You can access it here.

For questions and comments, feel free to contact me below.


Baue, B. (2016). An Intro to ThiveAbility: The Next Stage of Development for Sustainability. Retrieved from: https://sustainablebrands.com/read/new-metrics/an-intro-to-thriveability-the-next-stage-of-development-for-sustainability

Brunklaus B., Riise E. (2018) Bio-based Materials Within the Circular Economy: Opportunities and Challenges. In: Benetto E., Gericke K., Guiton M. (eds) Designing Sustainable Technologies, Products and Policies. Springer, Cham

CarbonTrust (2019). What are Scope 3 emissions?. Retrieved from: https://www.carbontrust.com/resources/what-are-scope-3-emissions

Downie, J., & Stubbs, W. (2013). Evaluation of Australian companies’ scope 3 greenhouse gas emissions assessments. Journal of Cleaner Production56, 156-163.

GreenhouseGasProtocol (2020). Scope3 Calculation Guidance. Retrieved from: https://ghgprotocol.org/scope-3-technical-calculation-guidance

InternationalBiocharInitiative (2020). Biochar is a Valuable Soil Amendment. Retrieved from: https://biochar-international.org/biochar/

Soezer, A. (2019). Circular Economy and a New Generation of NDCs. UNDP Webinar. Retrieved from: https://www.ndcs.undp.org/content/ndc-support-programme/en/home/impact-and-learning/ideas-and-insights/20190/circular-economy-new-ndc-generation-.html